IOCAS-IR  > 海洋生态与环境科学重点实验室
Estimating animal population size with very high-resolution satellite imagery
Zhao, Peng1,2,3; Liu, Shuming3; Zhou, Yi2,4,5,6; Lynch, Tim7; Lu, Wenhu3; Zhang, Tao2,4,5,6; Yang, Hongsheng2,4,5,6
2020-11-04
发表期刊CONSERVATION BIOLOGY
ISSN0888-8892
页码9
通讯作者Yang, Hongsheng([email protected])
摘要Very high-resolution (VHR) satellite sensors can be used to estimate the size of animal populations, a critical factor in wildlife management, and acquire animal spatial distributions in an economical, easy, and precise way. We developed a method for satellite population size estimation that includes a noninvasive photogrammetry, from which the animal's average orthographic area is calculated, and an imagery interpretation method that estimates population size based on the ratio of an observed animal population area to the average individual area. As a proof of concept, we used this method to estimate the population size of Whooper Swans (Cygnus cygnus) in a national nature reserve in China. To reduce errors, the reserve was subdivided into regions of interest based on locations of Whooper Swan and background brightness. Estimates from the satellite pixels were compared with manual counts made over 2 years, at 3 locations, and in 3 land-cover types. Our results showed 1124 Whooper Swans occupied a national nature reserve on 15 February 2013, and the average percent error was 3.16% (SE = 1.37). These results demonstrate that our method produced robust data for population size estimation that were indistinguishable from manual count data. Our method may be used generally to estimate population sizes of visible and gregarious animals that exhibit high contrast relative to their environments and may inform estimations of populations in complex backgrounds.
关键词population distribution population size remote sensing wildlife management
DOI10.1111/cobi.13613
收录类别SCI
语种英语
资助项目National Natural Sciences Foundation of China[41606192]; National Key R&D Program of China[2019YFD0901301]; National Science & Technology Basic Work Program[2015FY110600]; Industry Leading Talents Project of Taishan Scholars[LJNY201704]; Taishan Scholars Program; Open Fund of Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology[KLMEES201607]
WOS研究方向Biodiversity & Conservation ; Environmental Sciences & Ecology
WOS类目Biodiversity Conservation ; Ecology ; Environmental Sciences
WOS记录号WOS:000584650300001
出版者WILEY
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/169052
专题海洋生态与环境科学重点实验室
通讯作者Yang, Hongsheng
作者单位1.Hainan Univ, State Key Lab Marine Resource Utilizat South Chin, Haikou 570228, Hainan, Peoples R China
2.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Marine Ecol & Environm Sci, Qingdao 266071, Peoples R China
3.Natl Marine Data & Informat Serv, Tianjin 300171, Peoples R China
4.Qingdao Natl Lab Marine Sci & Technol, Lab Marine Ecol & Environm Sci, Qingdao 266237, Peoples R China
5.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China
6.Chinese Acad Sci, Inst Oceanol, CAS Engn Lab Marine Ranching, Qingdao 266071, Peoples R China
7.CSIRO Oceans & Atmosphere Flagship, Hobart, Tas 7001, Australia
第一作者单位海洋生态与环境科学重点实验室
通讯作者单位海洋生态与环境科学重点实验室;  中国科学院海洋大科学研究中心;  中国科学院海洋研究所
推荐引用方式
GB/T 7714
Zhao, Peng,Liu, Shuming,Zhou, Yi,et al. Estimating animal population size with very high-resolution satellite imagery[J]. CONSERVATION BIOLOGY,2020:9.
APA Zhao, Peng.,Liu, Shuming.,Zhou, Yi.,Lynch, Tim.,Lu, Wenhu.,...&Yang, Hongsheng.(2020).Estimating animal population size with very high-resolution satellite imagery.CONSERVATION BIOLOGY,9.
MLA Zhao, Peng,et al."Estimating animal population size with very high-resolution satellite imagery".CONSERVATION BIOLOGY (2020):9.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
cobi.13613.pdf(1739KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Peng]的文章
[Liu, Shuming]的文章
[Zhou, Yi]的文章
百度学术
百度学术中相似的文章
[Zhao, Peng]的文章
[Liu, Shuming]的文章
[Zhou, Yi]的文章
必应学术
必应学术中相似的文章
[Zhao, Peng]的文章
[Liu, Shuming]的文章
[Zhou, Yi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: cobi.13613.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。