IOCAS-IR  > 海洋环流与波动重点实验室
Purely satellite data-driven deep learning forecast of complicated tropical instability waves
Zheng, Gang1; Li, Xiaofeng2,3; Zhang, Rong-Hua2,3; Liu, Bin4
2020-07-01
发表期刊SCIENCE ADVANCES
ISSN2375-2548
卷号6期号:29页码:9
通讯作者Li, Xiaofeng([email protected])
摘要Forecasting fields of oceanic phenomena has long been dependent on physical equation-based numerical models. The challenge is that many natural processes need to be considered for understanding complicated phenomena. In contrast, rules of the processes are already embedded in the time-series observation itself. Thus, inspired by largely available satellite remote sensing data and the advance of deep learning technology, we developed a purely satellite data-driven deep learning model for forecasting the sea surface temperature evolution associated with a typical phenomenon: a tropical instability wave. During the testing period of 9 years (2010-2019), our model accurately and efficiently forecasts the sea surface temperature field. This study demonstrates the strong potential of the satellite data-driven deep learning model as an alternative to traditional numerical models for forecasting oceanic phenomena.
DOI10.1126/sciadv.aba1482
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of the Chinese Academy of Sciences[XDB42000000]; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA19090103]; Key R&D Project of Shandong Province[2019JZZY010102]; National Natural Science Foundation of China[41676167]; National Natural Science Foundation of China[41776183]; Key Deployment Project of Center for Ocean Mega-Science, CAS[COMS2019R02]; CAS Program[Y9KY04101L]; Project of State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography[SOEDZZ2003]
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000552227800010
出版者AMER ASSOC ADVANCEMENT SCIENCE
引用统计
被引频次:143[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/167997
专题海洋环流与波动重点实验室
通讯作者Li, Xiaofeng
作者单位1.Minist Nat Resources, State Key Lab Satellite Ocean Environm Dynam, Inst Oceanog 2, Hangzhou 310012, Peoples R China
2.Chinese Acad Sci, Big Data Ctr, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
3.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China
4.Shanghai Ocean Univ, Coll Marine Sci, Shanghai 201306, Peoples R China
通讯作者单位中国科学院海洋研究所;  中国科学院海洋大科学研究中心
推荐引用方式
GB/T 7714
Zheng, Gang,Li, Xiaofeng,Zhang, Rong-Hua,et al. Purely satellite data-driven deep learning forecast of complicated tropical instability waves[J]. SCIENCE ADVANCES,2020,6(29):9.
APA Zheng, Gang,Li, Xiaofeng,Zhang, Rong-Hua,&Liu, Bin.(2020).Purely satellite data-driven deep learning forecast of complicated tropical instability waves.SCIENCE ADVANCES,6(29),9.
MLA Zheng, Gang,et al."Purely satellite data-driven deep learning forecast of complicated tropical instability waves".SCIENCE ADVANCES 6.29(2020):9.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Purely satellite dat(7758KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zheng, Gang]的文章
[Li, Xiaofeng]的文章
[Zhang, Rong-Hua]的文章
百度学术
百度学术中相似的文章
[Zheng, Gang]的文章
[Li, Xiaofeng]的文章
[Zhang, Rong-Hua]的文章
必应学术
必应学术中相似的文章
[Zheng, Gang]的文章
[Li, Xiaofeng]的文章
[Zhang, Rong-Hua]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Purely satellite data-driven deep learning forecast of complicated tropical instability waves.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。