Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
Purely satellite data-driven deep learning forecast of complicated tropical instability waves | |
Zheng, Gang1; Li, Xiaofeng2,3; Zhang, Rong-Hua2,3; Liu, Bin4 | |
2020-07-01 | |
发表期刊 | SCIENCE ADVANCES |
ISSN | 2375-2548 |
卷号 | 6期号:29页码:9 |
通讯作者 | Li, Xiaofeng([email protected]) |
摘要 | Forecasting fields of oceanic phenomena has long been dependent on physical equation-based numerical models. The challenge is that many natural processes need to be considered for understanding complicated phenomena. In contrast, rules of the processes are already embedded in the time-series observation itself. Thus, inspired by largely available satellite remote sensing data and the advance of deep learning technology, we developed a purely satellite data-driven deep learning model for forecasting the sea surface temperature evolution associated with a typical phenomenon: a tropical instability wave. During the testing period of 9 years (2010-2019), our model accurately and efficiently forecasts the sea surface temperature field. This study demonstrates the strong potential of the satellite data-driven deep learning model as an alternative to traditional numerical models for forecasting oceanic phenomena. |
DOI | 10.1126/sciadv.aba1482 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Strategic Priority Research Program of the Chinese Academy of Sciences[XDB42000000]; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA19090103]; Key R&D Project of Shandong Province[2019JZZY010102]; National Natural Science Foundation of China[41676167]; National Natural Science Foundation of China[41776183]; Key Deployment Project of Center for Ocean Mega-Science, CAS[COMS2019R02]; CAS Program[Y9KY04101L]; Project of State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography[SOEDZZ2003] |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:000552227800010 |
出版者 | AMER ASSOC ADVANCEMENT SCIENCE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/167997 |
专题 | 海洋环流与波动重点实验室 |
通讯作者 | Li, Xiaofeng |
作者单位 | 1.Minist Nat Resources, State Key Lab Satellite Ocean Environm Dynam, Inst Oceanog 2, Hangzhou 310012, Peoples R China 2.Chinese Acad Sci, Big Data Ctr, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China 3.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China 4.Shanghai Ocean Univ, Coll Marine Sci, Shanghai 201306, Peoples R China |
通讯作者单位 | 中国科学院海洋研究所; 中国科学院海洋大科学研究中心 |
推荐引用方式 GB/T 7714 | Zheng, Gang,Li, Xiaofeng,Zhang, Rong-Hua,et al. Purely satellite data-driven deep learning forecast of complicated tropical instability waves[J]. SCIENCE ADVANCES,2020,6(29):9. |
APA | Zheng, Gang,Li, Xiaofeng,Zhang, Rong-Hua,&Liu, Bin.(2020).Purely satellite data-driven deep learning forecast of complicated tropical instability waves.SCIENCE ADVANCES,6(29),9. |
MLA | Zheng, Gang,et al."Purely satellite data-driven deep learning forecast of complicated tropical instability waves".SCIENCE ADVANCES 6.29(2020):9. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Purely satellite dat(7758KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论