IOCAS-IR  > 海洋环流与波动重点实验室
The Optimal Precursor of El Nino in the GFDL CM2p1 Model
Yang, Zeyun1,4; Fang, Xianghui2,3,5; Mu, Mu2,3,5
2020-03-01
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
ISSN2169-9275
卷号125期号:3页码:14
通讯作者Fang, Xianghui([email protected])
摘要By applying the principal component analysis-based particle swarm optimization algorithm, the conditional nonlinear optimal perturbation is firstly calculated in the Geophysical Fluid Dynamics Laboratory Climate Model version 2p1 (GFDL CM2p1) to identify the optimal precursor (OPR) of El Nino. Specifically, through optimizing the initial perturbation, the OPRs that have the largest nonlinear evolution (i.e., mature state of El Nino) for two reference states are obtained, which are then confirmed according to the validation test. The results indicate that both OPRs show positive sea surface temperature perturbation in the west (2 degrees N-2 degrees S, 135.5-165.5 degrees E). For the subsurface component, they exhibit positive subsurface temperature perturbation (STP) in the whole mixed layer of the west and negative STP in the upper layer of the east (i.e., 0- to 85-m depth, 2 degrees N-2 degrees S, 79.5-109.5 degrees W). Further analyses of the evolution of the sea surface temperature perturbation, STP, and surface wind perturbation suggest that the development of the OPRs in the model is consistent with the recognized mechanism for El Nino-Southern Oscillation development, that is, through the Bjerknes positive feedback. The results indicate that the model can realistically capture the dominant processes for El Nino development, and the principal component analysis-based particle swarm optimization algorithm is a practical solution for calculating the conditional nonlinear optimal perturbation in a complicated numerical model such as the GFDL CM2p1. They both shed a light on guiding the realistic observing systems. Key Points < id="jgrc23894-li-0001">CNOP approach is applied to identify the optimal precursors of El Nino in the GFDL CM2p1 model < id="jgrc23894-li-0002">The PPSO algorithm is firstly and successfully adopted in the GFDL CM2p1 model to calculate the CNOP < id="jgrc23894-li-0003">Results suggest that the surface and subsurface temperature perturbations with specific patterns are crucial for El Nino development
关键词optimal precursor ENSO CNOP GFDL CM2p1 PPSO
DOI10.1029/2019JC015797
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[41805045]
WOS研究方向Oceanography
WOS类目Oceanography
WOS记录号WOS:000534229400029
出版者AMER GEOPHYSICAL UNION
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/167552
专题海洋环流与波动重点实验室
通讯作者Fang, Xianghui
作者单位1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
2.Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai, Peoples R China
3.Fudan Univ, Inst Atmospher Sci, Shanghai, Peoples R China
4.Univ Chinese Acad Sci, Beijing, Peoples R China
5.Zhuhai Fudan Innovat Res Inst, Innovat Ctr Ocean & Atmosphere Syst, Zhuhai, Peoples R China
第一作者单位海洋环流与波动重点实验室
推荐引用方式
GB/T 7714
Yang, Zeyun,Fang, Xianghui,Mu, Mu. The Optimal Precursor of El Nino in the GFDL CM2p1 Model[J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,2020,125(3):14.
APA Yang, Zeyun,Fang, Xianghui,&Mu, Mu.(2020).The Optimal Precursor of El Nino in the GFDL CM2p1 Model.JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,125(3),14.
MLA Yang, Zeyun,et al."The Optimal Precursor of El Nino in the GFDL CM2p1 Model".JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 125.3(2020):14.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
2019JC015797.pdf(4470KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Zeyun]的文章
[Fang, Xianghui]的文章
[Mu, Mu]的文章
百度学术
百度学术中相似的文章
[Yang, Zeyun]的文章
[Fang, Xianghui]的文章
[Mu, Mu]的文章
必应学术
必应学术中相似的文章
[Yang, Zeyun]的文章
[Fang, Xianghui]的文章
[Mu, Mu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2019JC015797.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。