Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
The Optimal Precursor of El Nino in the GFDL CM2p1 Model | |
Yang, Zeyun1,4; Fang, Xianghui2,3,5; Mu, Mu2,3,5 | |
2020-03-01 | |
发表期刊 | JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS |
ISSN | 2169-9275 |
卷号 | 125期号:3页码:14 |
通讯作者 | Fang, Xianghui([email protected]) |
摘要 | By applying the principal component analysis-based particle swarm optimization algorithm, the conditional nonlinear optimal perturbation is firstly calculated in the Geophysical Fluid Dynamics Laboratory Climate Model version 2p1 (GFDL CM2p1) to identify the optimal precursor (OPR) of El Nino. Specifically, through optimizing the initial perturbation, the OPRs that have the largest nonlinear evolution (i.e., mature state of El Nino) for two reference states are obtained, which are then confirmed according to the validation test. The results indicate that both OPRs show positive sea surface temperature perturbation in the west (2 degrees N-2 degrees S, 135.5-165.5 degrees E). For the subsurface component, they exhibit positive subsurface temperature perturbation (STP) in the whole mixed layer of the west and negative STP in the upper layer of the east (i.e., 0- to 85-m depth, 2 degrees N-2 degrees S, 79.5-109.5 degrees W). Further analyses of the evolution of the sea surface temperature perturbation, STP, and surface wind perturbation suggest that the development of the OPRs in the model is consistent with the recognized mechanism for El Nino-Southern Oscillation development, that is, through the Bjerknes positive feedback. The results indicate that the model can realistically capture the dominant processes for El Nino development, and the principal component analysis-based particle swarm optimization algorithm is a practical solution for calculating the conditional nonlinear optimal perturbation in a complicated numerical model such as the GFDL CM2p1. They both shed a light on guiding the realistic observing systems.
Key Points
|
关键词 | optimal precursor ENSO CNOP GFDL CM2p1 PPSO |
DOI | 10.1029/2019JC015797 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[41805045] |
WOS研究方向 | Oceanography |
WOS类目 | Oceanography |
WOS记录号 | WOS:000534229400029 |
出版者 | AMER GEOPHYSICAL UNION |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/167552 |
专题 | 海洋环流与波动重点实验室 |
通讯作者 | Fang, Xianghui |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China 2.Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai, Peoples R China 3.Fudan Univ, Inst Atmospher Sci, Shanghai, Peoples R China 4.Univ Chinese Acad Sci, Beijing, Peoples R China 5.Zhuhai Fudan Innovat Res Inst, Innovat Ctr Ocean & Atmosphere Syst, Zhuhai, Peoples R China |
第一作者单位 | 海洋环流与波动重点实验室 |
推荐引用方式 GB/T 7714 | Yang, Zeyun,Fang, Xianghui,Mu, Mu. The Optimal Precursor of El Nino in the GFDL CM2p1 Model[J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,2020,125(3):14. |
APA | Yang, Zeyun,Fang, Xianghui,&Mu, Mu.(2020).The Optimal Precursor of El Nino in the GFDL CM2p1 Model.JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,125(3),14. |
MLA | Yang, Zeyun,et al."The Optimal Precursor of El Nino in the GFDL CM2p1 Model".JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 125.3(2020):14. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
2019JC015797.pdf(4470KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论