Low Molecular Weight Fucoidan against Renal Ischemia-Reperfusion Injury via Inhibition of the MAPK Signaling Pathway | |
Chen, Jihui1,2; Wang, Weiling1,2; Zhang, Quanbin3; Li, Fei1,2; Lei, Tianluo1,2; Luo, Dali4; Zhou, Hong1,2; Yang, Baoxue1,2; Zhou, H | |
2013-02-13 | |
发表期刊 | PLOS ONE |
ISSN | 1932-6203 |
卷号 | 8期号:2页码:e562240 |
文章类型 | Article |
摘要 | Background: Ischemia reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI) in both native and transplanted kidneys. The objective of the present study was to evaluate whether low-molecular-weight fucoidan (LMWF) could attenuate renal IRI in an animal model and in vitro cell models and study the mechanisms in which LMWF protected from IRI.; Background: Ischemia reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI) in both native and transplanted kidneys. The objective of the present study was to evaluate whether low-molecular-weight fucoidan (LMWF) could attenuate renal IRI in an animal model and in vitro cell models and study the mechanisms in which LMWF protected from IRI. Methodology/Principal Findings: Male mice were subjected to right renal ischemia for 30 min and reperfusion for 24 h, or to a sham operation with left kidney removed. Kidneys undergone IR showed characteristic morphological changes, such as tubular dilatation, and brush border loss. However, LMWF significantly corrected the renal dysfunction and the abnormal levels of MPO, MDA and SOD induced by IR. LMWF also inhibited the activation of MAPK pathways, which consequently resulted in a significant decrease in the release of cytochrome c from mitochondria, ratios of Bax/Bcl-2 and cleaved caspase3/ caspase-3, and phosphorylation of p53. LMWF alleviated hypoxia-reoxygenation or CoCl2 induced cell viability loss and Delta Psi m dissipation in HK2 renal tubular epithelial cells, which indicates LMWF may result in an inhibition of the apoptosis pathway through reducing activity of MAPK pathways in a dose-dependent manner. Conclusions/Significance: Our in vivo and in vitro studies show that LMWF ameliorates acute renal IRI via inhibiting MAPK signaling pathways. The data provide evidence that LMWF may serve as a potential therapeutic agent for acute renal IRI. |
学科领域 | Science & Technology - Other Topics |
DOI | 10.1371/journal.pone.0056224 |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:000315970300131 |
WOS关键词 | UNDARIA-PINNATIFIDA ; MYOCARDIAL-ISCHEMIA ; PC12 CELLS ; LAMINARIA-JAPONICA ; FREE-RADICALS ; IN-VIVO ; APOPTOSIS ; ACTIVATION ; RAT ; JNK |
WOS标题词 | Science & Technology |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/16707 |
专题 | 海洋生物技术研发中心 |
通讯作者 | Zhou, H |
作者单位 | 1.Peking Univ, Sch Basic Med Sci, Dept Pharmacol, Beijing 100871, Peoples R China 2.Minist Educ, Key Lab Mol Cardiovasc Sci, Beijing, Peoples R China 3.Chinese Acad Sci, Inst Oceanol, Qingdao, Peoples R China 4.Capital Med Univ, Dept Pharmacol, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Jihui,Wang, Weiling,Zhang, Quanbin,et al. Low Molecular Weight Fucoidan against Renal Ischemia-Reperfusion Injury via Inhibition of the MAPK Signaling Pathway[J]. PLOS ONE,2013,8(2):e562240. |
APA | Chen, Jihui.,Wang, Weiling.,Zhang, Quanbin.,Li, Fei.,Lei, Tianluo.,...&Zhou, H.(2013).Low Molecular Weight Fucoidan against Renal Ischemia-Reperfusion Injury via Inhibition of the MAPK Signaling Pathway.PLOS ONE,8(2),e562240. |
MLA | Chen, Jihui,et al."Low Molecular Weight Fucoidan against Renal Ischemia-Reperfusion Injury via Inhibition of the MAPK Signaling Pathway".PLOS ONE 8.2(2013):e562240. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Low Molecular Weight(928KB) | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论