IOCAS-IR  > 海洋环流与波动重点实验室
A novel residual graph convolution deep learning model for short-term network-based traffic forecasting
Zhang, Yang1,2; Cheng, Tao1; Ren, Yibin3,4; Xie, Kun5
2019-12-04
发表期刊INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
ISSN1365-8816
卷号34期号:5页码:27
通讯作者Zhang, Yang([email protected])
摘要Short-term traffic forecasting on large street networks is significant in transportation and urban management, such as real-time route guidance and congestion alleviation. Nevertheless, it is very challenging to obtain high prediction accuracy with reasonable computational cost due to the complex spatial dependency on the traffic network and the time-varying traffic patterns. To address these issues, this paper develops a residual graph convolution long short-term memory (RGC-LSTM) model for spatial-temporal data forecasting considering the network topology. This model integrates a new graph convolution operator for spatial modelling on networks and a residual LSTM structure for temporal modelling considering multiple periodicities. The proposed model has few parameters, low computational complexity, and a fast convergence rate. The framework is evaluated on both the 10-min traffic speed data from Shanghai, China and the 5-min Caltrans Performance Measurement System (PeMS) traffic flow data. Experiments show the advantages of the proposed approach over various state-of-the-art baselines, as well as consistent performance across different datasets.
关键词Short-term traffic forecasting spatial-temporal dependency network topology graph convolution residual long short-term memory
DOI10.1080/13658816.2019.1697879
收录类别SCI
语种英语
资助项目University College London###3478; China Scholarship Council[201603170309]###3477; UK Economic and Social Research Council[ES/L011840/1]###3476; UK Economic and Social Research Council[ES/L011840/1]; China Scholarship Council[201603170309]; University College London
WOS研究方向Computer Science ; Geography ; Physical Geography ; Information Science & Library Science
WOS类目Computer Science, Information Systems ; Geography ; Geography, Physical ; Information Science & Library Science
WOS记录号WOS:000500113700001
出版者TAYLOR & FRANCIS LTD
引用统计
被引频次:65[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
版本出版稿
条目标识符http://ir.qdio.ac.cn/handle/337002/163862
专题海洋环流与波动重点实验室
通讯作者Zhang, Yang
作者单位1.UCL, Dept Civil Environm & Geomat Engn, SpaceTimeLab Big Data Analyt, London, England
2.Natl Univ Def Technol, Coll Syst Engn, Changsha, Hunan, Peoples R China
3.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao, Shandong, Peoples R China
4.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao, Shandong, Peoples R China
5.Old Dominion Univ, Dept Civil & Environm Engn, Norfolk, VA USA
推荐引用方式
GB/T 7714
Zhang, Yang,Cheng, Tao,Ren, Yibin,et al. A novel residual graph convolution deep learning model for short-term network-based traffic forecasting[J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,2019,34(5):27.
APA Zhang, Yang,Cheng, Tao,Ren, Yibin,&Xie, Kun.(2019).A novel residual graph convolution deep learning model for short-term network-based traffic forecasting.INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,34(5),27.
MLA Zhang, Yang,et al."A novel residual graph convolution deep learning model for short-term network-based traffic forecasting".INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 34.5(2019):27.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A novel residual gra(4145KB)期刊论文作者接受稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Yang]的文章
[Cheng, Tao]的文章
[Ren, Yibin]的文章
百度学术
百度学术中相似的文章
[Zhang, Yang]的文章
[Cheng, Tao]的文章
[Ren, Yibin]的文章
必应学术
必应学术中相似的文章
[Zhang, Yang]的文章
[Cheng, Tao]的文章
[Ren, Yibin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A novel residual graph convolution deep learning model for short-term network-ba.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。