Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes | |
Ren, Yibin1,2,3; Chen, Huanfa4; Han, Yong5,6; Cheng, Tao7; Zhang, Yang7; Chen, Ge5,6 | |
2019-08-15 | |
发表期刊 | INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE |
ISSN | 1365-8816 |
页码 | 22 |
通讯作者 | Han, Yong([email protected]) |
摘要 | The spatio-temporal residual network (ST-ResNet) leverages the power of deep learning (DL) for predicting the volume of citywide spatio-temporal flows. However, this model, neglects the dynamic dependency of the input flows in the temporal dimension, which affects what spatio-temporal features may be captured in the result. This study introduces a long short-term memory (LSTM) neural network into the ST-ResNet to form a hybrid integrated-DL model to predict the volumes of citywide spatio-temporal flows (called HIDLST). The new model can dynamically learn the temporal dependency among flows via the feedback connection in the LSTM to improve accurate captures of spatio-temporal features in the flows. We test the HIDLST model by predicting the volumes of citywide taxi flows in Beijing, China. We tune the hyperparameters of the HIDLST model to optimize the prediction accuracy. A comparative study shows that the proposed model consistently outperforms ST-ResNet and several other typical DL-based models on prediction accuracy. Furthermore, we discuss the distribution of prediction errors and the contributions of the different spatio-temporal patterns. |
关键词 | Spatio-temporal flow volume prediction deep learning LSTM ResNet |
DOI | 10.1080/13658816.2019.1652303 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Science and Technology Project of Qingdao[16-6-2-61-NSH]###2986; China Scholarship Council (CSC)###2565; Science and Technology Project of Qingdao[16-6-2-61-NSH]; China Scholarship Council (CSC) |
WOS研究方向 | Computer Science ; Geography ; Physical Geography ; Information Science & Library Science |
WOS类目 | Computer Science, Information Systems ; Geography ; Geography, Physical ; Information Science & Library Science |
WOS记录号 | WOS:000481199600001 |
出版者 | TAYLOR & FRANCIS LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/162331 |
专题 | 海洋环流与波动重点实验室 |
通讯作者 | Han, Yong |
作者单位 | 1.Chinese Acad Sci, CAS Key Lab Ocean Circulat & Waves, Inst Oceanol, Qingdao, Shandong, Peoples R China 2.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao, Shandong, Peoples R China 3.Qingdao Natl Lab Marine, Pilot Natl Lab Marine Sci & Technol, Qingdao, Shandong, Peoples R China 4.UCL, Ctr Adv Spatial Anal, London, England 5.Ocean Univ China, Coll Informat Sci & Engn, Qingdao Collaborat Innovat Ctr Marine Sci & Techn, Qingdao, Shandong, Peoples R China 6.Qingdao Natl Lab Marine, Lab Reg Oceanog & Numer Modeling, Qingdao, Shandong, Peoples R China 7.UCL, Dept Civil Environm & Geomat Engn, SpaceTimeLab, London, England |
第一作者单位 | 中国科学院海洋研究所 |
推荐引用方式 GB/T 7714 | Ren, Yibin,Chen, Huanfa,Han, Yong,et al. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes[J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,2019:22. |
APA | Ren, Yibin,Chen, Huanfa,Han, Yong,Cheng, Tao,Zhang, Yang,&Chen, Ge.(2019).A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes.INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,22. |
MLA | Ren, Yibin,et al."A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes".INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE (2019):22. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
A hybrid integrated (3526KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论