IOCAS-IR  > 海洋环流与波动重点实验室
A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes
Ren, Yibin1,2,3; Chen, Huanfa4; Han, Yong5,6; Cheng, Tao7; Zhang, Yang7; Chen, Ge5,6
2019-08-15
发表期刊INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
ISSN1365-8816
页码22
通讯作者Han, Yong([email protected])
摘要The spatio-temporal residual network (ST-ResNet) leverages the power of deep learning (DL) for predicting the volume of citywide spatio-temporal flows. However, this model, neglects the dynamic dependency of the input flows in the temporal dimension, which affects what spatio-temporal features may be captured in the result. This study introduces a long short-term memory (LSTM) neural network into the ST-ResNet to form a hybrid integrated-DL model to predict the volumes of citywide spatio-temporal flows (called HIDLST). The new model can dynamically learn the temporal dependency among flows via the feedback connection in the LSTM to improve accurate captures of spatio-temporal features in the flows. We test the HIDLST model by predicting the volumes of citywide taxi flows in Beijing, China. We tune the hyperparameters of the HIDLST model to optimize the prediction accuracy. A comparative study shows that the proposed model consistently outperforms ST-ResNet and several other typical DL-based models on prediction accuracy. Furthermore, we discuss the distribution of prediction errors and the contributions of the different spatio-temporal patterns.
关键词Spatio-temporal flow volume prediction deep learning LSTM ResNet
DOI10.1080/13658816.2019.1652303
收录类别SCI
语种英语
资助项目Science and Technology Project of Qingdao[16-6-2-61-NSH]###2986; China Scholarship Council (CSC)###2565; Science and Technology Project of Qingdao[16-6-2-61-NSH]; China Scholarship Council (CSC)
WOS研究方向Computer Science ; Geography ; Physical Geography ; Information Science & Library Science
WOS类目Computer Science, Information Systems ; Geography ; Geography, Physical ; Information Science & Library Science
WOS记录号WOS:000481199600001
出版者TAYLOR & FRANCIS LTD
引用统计
被引频次:48[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/162331
专题海洋环流与波动重点实验室
通讯作者Han, Yong
作者单位1.Chinese Acad Sci, CAS Key Lab Ocean Circulat & Waves, Inst Oceanol, Qingdao, Shandong, Peoples R China
2.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao, Shandong, Peoples R China
3.Qingdao Natl Lab Marine, Pilot Natl Lab Marine Sci & Technol, Qingdao, Shandong, Peoples R China
4.UCL, Ctr Adv Spatial Anal, London, England
5.Ocean Univ China, Coll Informat Sci & Engn, Qingdao Collaborat Innovat Ctr Marine Sci & Techn, Qingdao, Shandong, Peoples R China
6.Qingdao Natl Lab Marine, Lab Reg Oceanog & Numer Modeling, Qingdao, Shandong, Peoples R China
7.UCL, Dept Civil Environm & Geomat Engn, SpaceTimeLab, London, England
第一作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Ren, Yibin,Chen, Huanfa,Han, Yong,et al. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes[J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,2019:22.
APA Ren, Yibin,Chen, Huanfa,Han, Yong,Cheng, Tao,Zhang, Yang,&Chen, Ge.(2019).A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes.INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,22.
MLA Ren, Yibin,et al."A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes".INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE (2019):22.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A hybrid integrated (3526KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ren, Yibin]的文章
[Chen, Huanfa]的文章
[Han, Yong]的文章
百度学术
百度学术中相似的文章
[Ren, Yibin]的文章
[Chen, Huanfa]的文章
[Han, Yong]的文章
必应学术
必应学术中相似的文章
[Ren, Yibin]的文章
[Chen, Huanfa]的文章
[Han, Yong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: A hybrid integrated deep learning model for the prediction of citywide spatio-te.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。