IOCAS-IR  > 海洋生物分类与系统演化实验室
黄、东海交界海域小型底栖动物群落结构及底栖桡足类研究
刘清河
学位类型博士
导师李新正
2019-06-10
学位授予单位中国科学院大学
学位授予地点中国科学院海洋研究所
学位名称理学博士
关键词生态学 底栖猛水蚤 黑潮分支 分类学
摘要

      于2016 年9 月和12 月对黄、东海交界海域共计20 个站位进行小型底栖动物和环境因子采样调查。对调查海域内小型底栖动物群落的类群组成、丰度、生物量和空间分布及其与环境因子间的相关性,底栖桡足类的群落结构和形态分类等方面进行了研究。研究结果表明:
      1)调查海域共鉴定出以海洋线虫为最优势类群的16 个小型底栖动物类群。其它类群依次为底栖桡足类、动吻类、多毛类、双壳幼体、介形类等。9 月航次小型底栖动物平均丰度为(1758 ± 759)ind./10 cm2,线虫占总丰度的95.6%,;平均生物量为(1216.4 ± 464.7)μg·dwt./10 cm2,线虫占55.26%;12 月航次平均丰度为(2011 ± 1471)ind./10 cm2,线虫占95.6%;平均生物量为(1143.0 ± 755.0)μg·dwt./10 cm2,线虫占67.28%。
       2)研究海域小型底栖动物群落主要可以划分为近岸群落和外海群落两个生物类群。ANOSIM 检验结果表明,小型底栖动物群落在季节间(9 月和12 月)并无显著差异。CLUSTER 划分结果显示,研究海域小型底栖动物群落主要可以划分为两组,组I 主要由近岸站位构成,组II 主要由外海站位组成。其中近岸组小型底栖动物群落表现出高丰度值、低多样性特征,外海站位表现出低丰度值特征。BIOENV 分析表明,水深、沉积物有机质含量、砂含量以及沉积物Zn 含量等环境要素组合能够较好的解释小型底栖动物群落间的差异。
      3)长江口外的上升流和低氧会导致该海域小型底栖动物丰度增加,多样性下降。9 月航次小型底栖动物丰度最大值出现在长江口上升流和低氧重合区,且该海域内海洋线虫所占比例增加,桡足类和其它类群所占比例下降。上升流会导致该海域水体初级生产力增加,为小型底栖动物提供了充足的食物来源;低氧则遏制了大型底栖动物以及对低氧敏感的小型底栖动物类群(桡足类等)的生存,减小了小型底栖动物被捕食的压力,有利于海洋线虫的生存。
      4)黑潮入侵会导致小型底栖动物丰度在其入侵路线上增加。在各断面分布上,除D1 站位外,小型底栖动物丰度最高值均出现在60 m 等深线附近,该分布特征与黑潮在东海的入侵路线吻合,推测小型底栖动物丰度的增加与黑潮入侵密切相关。黑潮入侵所导致的水体初级生产力的增加以及其所携带的溶氧可能是造成小型底栖动物丰度增加的重要原因。此外,黑潮水常年稳定的温、盐特质,能够减少季节变化所产生的不利影响,有利于小型底栖动物的生存和繁殖。
       5)研究发现了Haloschizopera 属2 个新种,Haloschizopera cheni sp. nov.和Haloschizopera sheni sp. nov.;Heteropsyllus 属1 新纪录种;Zosime 属1 新纪录种。研究海域内共计鉴定底栖猛水蚤80 余种,6 类幼体,隶属于17 科,36 属。其中粗毛猛水蚤科(Miraciidae)种类最多,包含10 属18 种。此外,本研究还对Haloschizopera 属进行了重新描述,并建立了该属分种检索表。
       6)研究海域底栖猛水蚤群落主要可以划分为近岸群落和外海群落两个类群。CLUSTER 划分结果显示,研究海域底栖猛水蚤主要可以划分为3 个组,其中组I 和组II 主要由离岸站位组成,组III 主要由近岸站位组成(BS 除外)。与组I和组II 相比,组III 在丰度和物种多样性上是均显著低于组I 和组II。近岸环境压迫如人类活动干扰、污染、低氧等可能是造成该区域猛水蚤丰度和多样性下降的重要原因。BIOEVN 分析表明,水深和底层盐度是影响猛水蚤群落差异的重要因素。

其他摘要

Meiofaunal and environmental samples were collected during cruises carried out in September and December 2016, at the boundary and its adjacent area of the Yellow Sea and the East China Sea. Meiofaunal community composition, abundance, biomass, distribution patterns and their relationship with environmental variables, as well as species composition and taxonomy of benthic harpacticoids, were studied. The results were as follows:

1) a total of 16 taxa were identified in the study area, with nematodes being the most dominant groups, followed by copepods, kinorhynchs, polychaetes, bivalves etc. The average abundance of meiofauna in September was (1758 ± 759ind./10 cm2, with nematodes accounting for 95.6%; the average biomass was1216.4 ± 464.7μg·dwt./10 cm2, with nematodes accounting for 55.26%. The average abundance of meiofauna in December was2011 ± 1471ind./10 cm2, with nematodes accounting for 95.6%; average biomass was1143.0 ± 755.0μg·dwt./10 cm2, with nematodes accounting for 67.28%.

2) Meiofaunal communities can be divided into two groups, one near-shore community and one offshore community. Results of ANOSIM showed that there were no significant differences between September and December in terms of meiofaunal communities. Results of CLUSTER analysis showed that meiofaunal community in the study area can be divided into two main groups. One group is composed of sites in the nearshore area with high abundance but low diversity, while the other group is mainly composed of site in the offshore area with relative low abundance. BIOENV analysis showed that sediment organic matter content, water depth, sand content and heavy metal content can best explain the differences of meiofaunal groups

3) Upwelling and hypxia outside the Changjiang estuary may lead to the increase of meiofaunal abundance but decrease of diversity in this area. In September the highest abundance occurred in the overlap of upwelling and hypoxia area, with high percentage of nematodes and low percentage of other taxa. This may be explained by the increase of primary productivity in water column, which benefits from the upwellings and provides sufficient food for meiofauna, and the inhibition of hypoxia on the existence of macrofauna and other sensitive meiofaunal groups, which reduces the pressure of predation and benifit the colonization of nematodes.

4) The intrusion of Kuroshio may lead to the increase of meiofaunal abundance in its route. Meiofauna communities showed high abundance near the 60 m isobath, which well matches with the route of Kuroshio intrusion. The intrusion of Kuroshio may lead to increase of primary productivity in water column and brings waters with dissolved oxygen. In addition, the stability of Kuroshio water may reduce the damage caused by seanonal changes, and benefits the reproduction of meifauna.

5) Two new species Haloschizopera cheni sp. nov. and Haloschizopera sheni sp. nov., and two new records Heteropsyllus coreanus Nam & Lee, 2006 and Zosime destituta Kim, Jung & Yoon, 2016 were identified. About 80 species and 6 kinds of juveniles of benthic harpacticoid were identified in the study area, belonging to 36 genera, 17 families. The most dominant family of harpacticoids was Miraciidae, including 18 species belonging to 10 genera. A review of the genus Haloschizopera was made with a key to species.

6) Harpacticoids communities can be devided into two near-shore community and offshore community. Results of CLUSTER shows that harpacticoids communities can be classified into three main groups. Group III was composed of sites in the near-shore area with lower abundance and diversity index, compared with Group I and II, both of which were composed of sites in the off shore area. Environmental stresses such as anthropogenic activites, pollution and hypoxia may be the main causes of lower abundance and diversity of harpacticoids in the near-shore area. BIOENV results showed that water depth and bottom salinity may best explain the differences of harpacticoids communities.

学科领域生态系统生态学 ; 动物分类学
学科门类理学::生物学
页数96
语种中文
目录

第1章 概论. 1

1.1 小型底栖动物和底栖桡足类. 1

1.1.1 小型底栖动物... 1

1.1.2 底栖桡足类... 3

1.2 小型底栖动物和底栖桡足类研究进展. 3

1.2.1小型底栖动物国内外研究进展... 3

1.2.1.1 国际小型底栖生物研究历史和现状... 3

1.2.1.2 我国小型底栖动物研究历史和现状... 5

1.2.2 底栖桡足类国内外研究进展... 6

1.3 影响小型底栖动物的主要环境因素. 8

1.3.1 沉积物颗粒特性... 9

1.3.2 沉积物-水交换界面——潮汐、海流... 10

1.3.3 沉积物含水量... 10

1.3.4 温度、盐度和pH... 11

1.3.5 生物扰动... 12

1.4 长江口及其临近海域. 12

1.5 研究的目的和意义. 14

第2章 黄、东海交界海域小型底栖动物群落结构. 16

2.1 材料与方法. 16

2.1.1 研究海域和站位... 16

2.1.2 采样方法和样品处理... 17

2.1.3 小型底栖的分离、挑选和计数... 18

2.1.4 环境因子测定方法... 18

2.1.5小型底栖动物丰度、生物量和生产力... 18

2.1.6 数据处理方法和分析... 19

2.2 结果. 19

2.2.1 研究海域环境特征... 19

2.2.1.1 水深、底层水温和盐度... 19

2.2.1.2 沉积物粒度组成、有机质含量、重金属含量... 20

2.2.2 小型底栖动物... 25

2.2.2.1 小型底栖动物类群组成、丰度和生物量... 25

2.2.2.3 小型底栖动物和环境因子相关性... 30

2.3 讨论. 31

2.3.1 长江冲淡水、台湾暖流以及沿岸流对底栖环境的影响... 31

2.3.1.1 水文特征... 31

2.3.1.2沉积物特征... 32

2.3.2 小型底栖动物群落水平分布差异... 33

2.3.2.1 上升流区和低氧对小型底栖动物群落的影响... 33

2.3.2.2 黑潮对小型底栖动物群落的影响... 36

2.3.3 与同海域其它研究比较... 37

2.4 小结. 40

第3章 黄、东海交界海域底栖桡足类研究. 41

3.1 底栖猛水蚤的分类系统. 41

3.2 底栖猛水蚤的外部形态特征. 42

3.3材料与方法. 46

3.3.1 研究海域和站位... 46

3.3.2 标本获取方法... 46

3.3.3 桡足类的解剖和制片... 46

3.3.4 数据处理和方法... 47

3.4 结果. 47

3.4.1 猛水蚤的物种组成... 47

3.4.2 海裂囊猛水蚤属(Haloschizopera)综述... 51

3.4.2.1海裂囊猛水蚤属的发展历程... 51

3.4.2.2形态演化和系统发生... 53

3.4.2.3 海裂囊猛水蚤属物种检索表... 56

3.4.3 猛水蚤新种的描述... 62

3.4.3.1 沈氏海裂囊猛水蚤 Haloschizopera sheni sp. nov. 62

3.4.3.2 陈氏海裂囊猛水蚤 Haloschizopera cheni sp. nov. 75

3.4.4 底栖猛水蚤群落结构... 87

3.4.4.1 底栖猛水蚤的丰度和物种分布... 87

3.4.4.2 底栖猛水蚤的群落聚类分析... 89

3.4.4.3 底栖猛水蚤的多样性指数... 90

3.4.4.4 底栖猛水蚤群落的年龄组成和雌、雄比... 90

3.4.4.5 底栖猛水蚤群落与环境因子相关性分析... 91

3.4.4.6 讨论... 91

第4章 结论与展望. 94

4.1 研究结论. 94

4.2 展望. 94

参考文献. 96

作者简历及攻读学位期间发表的学术论文与研究成果. 114

致  . 116

 

 

文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/156876
专题海洋生物分类与系统演化实验室
推荐引用方式
GB/T 7714
刘清河. 黄、东海交界海域小型底栖动物群落结构及底栖桡足类研究[D]. 中国科学院海洋研究所. 中国科学院大学,2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
黄、东海交界海域小型底栖动物群落结构及底(7878KB)学位论文 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘清河]的文章
百度学术
百度学术中相似的文章
[刘清河]的文章
必应学术
必应学术中相似的文章
[刘清河]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 黄、东海交界海域小型底栖动物群落结构及底栖桡足类研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。