IOCAS-IR
Mesoscale wind stress-SST coupled perturbations in the Kuroshio Extension
Wei, Yanzhou1; Wang, Hongna2,3; Zhang, Rong-Hua2,3,4
2019-03-01
发表期刊PROGRESS IN OCEANOGRAPHY
ISSN0079-6611
卷号172页码:108-123
通讯作者Wei, Yanzhou([email protected])
摘要Mesoscale perturbations of wind stress (TMs) and sea surface temperature (SSTMS) in the Kuroshio Extension (KE) are analyzed using long-term high-resolution satellite observations. Mesoscale wind stress and SST perturbations are first extracted using a locally weighted regression (loess) method, and then analyzed using statistical methods, including linear regression, Singular Value Decomposition (SVD), and the inverse method. The coupling coefficient between mesoscale wind stress magnitude vertical bar tau vertical bar(MS) and SSTMS,, and those between mesoscale wind stress divergence (curl) and downwind (crosswind) SST gradients, exhibit distinct seasonal variability, with large values in winter and small values in summer, consistent with previous studies. The three leading SVD modes for vertical bar tau vertical bar(MS) and SSTMS show highly consistent variability in both spatial patterns and temporal expansion coefficients, and the temporal expansion coefficients exhibit distinct seasonal and interannual variability; these modes are associated with inherent seasonal variability of vertical bar tau vertical bar(MS) and SSTMS and interannual variability of the KE jet dynamic state. Based on the observed coupling relationships between wind stress divergence (curl) and downwind (crosswind) SST gradients, an empirical model for mesoscale wind stress vector perturbations (tau(x), tau(y))(MS) = F(SST) is established; this model solves (tau(x), tau(y))(MS) from their divergence and curl estimated from SST gradient data using an inverse method. This newly established (tau(x), tau(y))(MS) = F(SST) model produces reasonably consistent solutions compared to the one established based on the empirical relationship between vertical bar tau vertical bar(MS) and SSTMS. Furthermore, this model could separate divergence-only and curl-only wind stress perturbations to study their respective effects, and thus is promising and will contribute to ocean dynamic analyses.
关键词Mesoscale air-sea coupling Satellite observation Loess SVD Inverse method
DOI10.1016/j.pocean.2019.01.012
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[41621064]###122; National Natural Science Foundation of China[41490644(41490640)]###392; National Key R&D Program of China[2017YFC1404102(2017YFC1404100)]###391; NASA Ocean Vector Winds Science Team###390; AMSR-E Science Team###389; NASA Earth Science MEaSUREs DISCOVER Project###119; NASA Earth Science MEaSUREs DISCOVER Project; AMSR-E Science Team; NASA Ocean Vector Winds Science Team; National Key R&D Program of China[2017YFC1404102(2017YFC1404100)]; National Natural Science Foundation of China[41490644(41490640)]; National Natural Science Foundation of China[41621064]
WOS研究方向Oceanography
WOS类目Oceanography
WOS记录号WOS:000460493500008
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/155340
专题中国科学院海洋研究所
通讯作者Wei, Yanzhou
作者单位1.Minist Nat Resources, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou, Zhejiang, Peoples R China
2.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
3.Qingdao Natl Lab Marine Sci & Technol, Qingdao, Peoples R China
4.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wei, Yanzhou,Wang, Hongna,Zhang, Rong-Hua. Mesoscale wind stress-SST coupled perturbations in the Kuroshio Extension[J]. PROGRESS IN OCEANOGRAPHY,2019,172:108-123.
APA Wei, Yanzhou,Wang, Hongna,&Zhang, Rong-Hua.(2019).Mesoscale wind stress-SST coupled perturbations in the Kuroshio Extension.PROGRESS IN OCEANOGRAPHY,172,108-123.
MLA Wei, Yanzhou,et al."Mesoscale wind stress-SST coupled perturbations in the Kuroshio Extension".PROGRESS IN OCEANOGRAPHY 172(2019):108-123.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
1-s2.0-S007966111730(2846KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei, Yanzhou]的文章
[Wang, Hongna]的文章
[Zhang, Rong-Hua]的文章
百度学术
百度学术中相似的文章
[Wei, Yanzhou]的文章
[Wang, Hongna]的文章
[Zhang, Rong-Hua]的文章
必应学术
必应学术中相似的文章
[Wei, Yanzhou]的文章
[Wang, Hongna]的文章
[Zhang, Rong-Hua]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 1-s2.0-S0079661117302471-main.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。