IOCAS-IR  > 海洋生态与环境科学重点实验室
石岛湾常见游泳动物的热耐受性研究
其他题名石岛湾常见游泳动物的热耐受性研究
南鸥
学位类型硕士
导师窦硕增
2017-05
学位授予单位中国科学院大学
学位授予地点北京
学位专业海洋生态学硕士
关键词热耐受性 基础水温 温升速率 最大临界温度 高起始致死温度 游泳动物
其他摘要
摘  要
        我国沿海地区分布了许多大型火电厂和核电厂,普遍采用直流冷却的方式,以冷却水为载体将大量的废热排放到海洋中。大量的温排水在近岸局部海域形成高温区,不仅改变了受纳水体的理化性质,而且影响了各类海洋生物的繁殖、发育和生长,对海洋生态环境造成严重影响。温度是影响水生生物生长、代谢等过程的重要环境因子。海洋生物的热耐受性实验研究有助于了解不同物种的热生理学和热污染对海洋生物造成的影响。
        石岛湾是我国北方海区的重要渔业生物的栖息地之一,该水域在建的某核电厂运营后,将有大量温排水排至附近的受纳水体内,会对该水域的海洋生物产生热影响效应。开展自然水温条件下该水域水生生物在不同温升速率条件下的热耐受性研究,可为科学认识温排水对海洋生态系统的热效应、评估核电厂温排水对石岛湾海域生物资源的影响以及完善核电厂温排水的排放控制标准等提供科学依据。
        本文采用动态法(Dynamic method)和静态法(Static method),以石岛湾八种常见游泳动物(许氏平鮋Sebastes schlegeli、大泷六线鱼Hexagrammos otakii、矛尾鰕虎鱼Chaeturichthys stigmatias、石鲽Platichthys bicoloratus、褐菖鲉Sebastiscus marmoratus、口虾蛄Oratosquilla oratoria、日本蟳Charybdis japonica和绒毛近方蟹Hemigrapsus penicillatus)为研究对象,对比研究了不同基础水温(5.0℃、9.0℃、11.0℃、13.0℃、17.0℃和26.0℃)和温升速率(0.5℃/h、1.0℃/h、2.0℃/h、3.0℃/h、4.0℃/h、6.0℃/h、9.0℃/h、12.0℃/h和15.0℃/h)下各实验物种的最大临界温度(Critical Thermal Maximum,CTM)和不同基础水温(5.0℃、11.0℃、13.0℃、17.0℃和26.0℃)下各实验物种的24 h高起始致死温度(24-h Upper Incipient Lethal Temperature,24-h UILT50)。主要研究结果包括:
        (1)基础水温和温升速率显著影响八种实验生物最大临界温度(CTM)。各实验物种的CTM与基础水温呈显著正相关,即其热耐受能力均随基础水温的升高而显著提高。例如,各温升速率下大泷六线鱼的CTM在冬季5.0℃基础水温时为25.1℃-29.1℃,而在夏季26.0℃基础水温时为30.5℃-32.7℃。矛尾鰕虎鱼在各温升速率下的CTM从冬季5.0℃基础水温下的29.7℃-34.2℃显著升高至夏季26.0℃基础水温下的35.7℃-38.1℃。
温升速率对生物热耐受性的影响因鱼种和季节基础水温而异。在夏季26.0℃基础水温下,各实验生物的CTM均随温升速率的升高而升高;而在冬季(5.0℃、9.0℃)、春季(11.0℃、13.0℃)和秋季(17.0℃)的基础水温下,各实验物种在不同温升速率下CTM的变化趋势因生物种类和基础水温的不同而异。
        (2)各实验物种的24h 高起始致死温度(24-h UILT50)与基础水温显著相关,均随基础水温的升高而显著上升,物种间的24-h UILT50差异显著。随基础水温从5.0℃升高到26.0℃,许氏平鮋、大泷六线鱼、矛尾鰕虎鱼、石鲽、褐菖鲉和口虾蛄六种实验生物的24-h UILT50分别从25.1℃、22.7℃、28.6℃、25.7℃、24.3℃和27.1℃升高到29.8℃、29.1℃、35.2℃、30.0℃、29.6℃和31.9℃。随基础水温从11.0℃升高到26.0℃,日本蟳的24-h UILT50从30.7℃升高到36.4℃。而绒毛近方蟹的24-h UILT50从11.0℃的31.2℃升高到17.0℃的36.1℃。依据各物种在不同基础水温下的24-h UILT50的大小判断,八种实验物种的热耐受能力依次为:绒毛近方蟹>日本蟳>矛尾鰕虎鱼>口虾蛄>石鲽>许氏平鮋>褐菖鲉>大泷六线鱼。
        综上所述,CTM与24-h UILT50是生物热耐受性实验中最重要的两个参数,且随基础水温的升高一般呈升高趋势。但是,在同一基础水温下各实验生物的CTM均高于24-h UILT50。基础水温和温升速率是影响游泳动物热耐受能力的重要因素,不同物种间的热耐受性存在显著差异。蟹类等甲壳动物的热耐受能力一般高于其他实验生物。
;
Abstract
        There are plenty of large scale coal-fired power plants and nuclear power plants in the coastal region of China, which discharge a large amount of waste heat emissions into the ocean generally in the direct-current cooling way. The large amount of thermal discharge leads to the high temperature zone in the coastal local waters. It not only changes the physicochemical properties of the receiving waters, but also affects the reproduction, ontogeny and growth of all marine organisms, which results in serious impacts on the marine ecological environment. Temperature is an important environmental factor which influenced the growth and metabolism of aquatic organisms. The thermal tolerance experimental research of marine organisms helps us understand the thermal physiology of the species and the effects of thermal pollution on marine organisms.
        Shidao Bay is an important habitat for fishery species in the northern Yellow Sea, China. The operation of the under-construction nuclear power plant in this area will discharge a large amount of waste heat emissions to the receiving waters near the Shidao Bay, which could generate thermal effects on the marine organisms of this region. Determining the thermal tolerance of aquatic organisms at natural temperatures and different temperature-rise rates provides scientific information for better understanding the thermal effects of thermal discharge on marine ecosystem, assessing impacts on the biological resources of Shidao Bay caused by the thermal discharge from nuclear power plants and improving the temperature control standards of thermal discharge.
        This study uses dynamic method and static method to quantify the critical thermal maximum (CTM) at different acclimatization temperatures (5.0℃, 9.0℃, 11.0℃, 13.0℃, 17.0℃ and 26.0℃) and temperature-rise rates (0.5℃/h, 1.0℃/h, 2.0℃/h, 3.0℃/h, 4.0℃/h, 6.0℃/h, 9.0℃/h, 12.0℃/h and 15.0℃/h) and 24-h upper incipient lethal temperature (24-h UILT50) at different acclimatization temperatures (5.0℃, 11.0℃, 13.0℃, 17.0℃ and 26.0℃) of the eight species (Sebastes schlegeli, Hexagrammos otakii, Chaeturichthys stigmatias, Platichthys bicoloratus, Sebastiscus marmoratus, Oratosquilla oratoria, Charybdis japonica, Hemigrapsus penicillatus). The main results are as follows:
        (1) Acclimatization temperature and temperature-rise rate significantly affect the CTM of the eight species. The CTM of each species is positively related to the acclimatization temperature. The thermal tolerance of each species increases significantly with the acclimatization temperature. For example, at the acclimatization temperature of 5.0℃, the CTM of Hexagrammos otakii at each temperature-rise rate is 25.1℃-29.1℃; at 26.0℃, the CTM ranges from 30.5℃ to 32.9℃. The CTM of Chaeturichthys stigmatias at each temperature-rise rate increases significantly from 29.7℃-34.2℃ at 5.0℃ to 35.7℃-38.1℃ at the acclimatization temperature of 26.0℃, respectively.
The effect of temperature-rise rate on CTM varies among species and acclimatization temperatures. At the acclimatization temperature of 26.0℃, the CTM of each species increases with temperature-rise rate. However, at 5.0℃, 9.0℃, 11.0℃, 13.0℃and 17.0℃, the CTM of each species at different temperature-rise rates varies with different species, depending on acclimatization temperatures.
        (2) The 24-h UILT50 of each species is positively related to the acclimatization temperature, which increases significantly with the acclimatization temperature. The 24-h UILT50 differed significantly among species. With the increasing of acclimatization temperature from 5.0℃ to 26.0℃, the 24-h UILT50 of Sebastes schlegeli, Hexagrammos otakii, Chaeturichthys stigmatias, Platichthys bicoloratus, Sebastiscus marmoratus, Oratosquilla oratoria increases from 25.1℃, 22.7℃, 28.6℃, 25.7℃, 24.3℃, 27.1℃ to 29.8℃, 29.1℃, 35.2℃, 30.0℃, 29.6℃, 31.9℃, respectively. For Charybdis japonica, the 24-h UILT50 increases from 30.7℃ at 11.0℃ acclimatization temperature to 36.4℃ at 26.0℃. The 24-h UILT50 of Hemigrapsus penicillatus increases from 31.2℃ at the acclimatization temperature of 11.0℃ to 36.1℃ at 17.0℃. According to the 24-h UILT50 of each species, the thermal tolerance of the eight species follows a ranking order of Hemigrapsus penicillatus > Charybdis japonica > Chaeturichthys stigmatias > Oratosquilla oratoria > Platichthys bicoloratus > Sebastes schlegeli > Sebastiscus marmoratus > Hexagrammos otakii.
        In conclusion, CTM and 24-h UILT50 are two of the most important parameters in thermal tolerance experimental studies, both of which generally increase with the rise of acclimatization temperature. However, at the same acclimatization temperature, the CTM of each species is commonly higher than the 24-h UILT50. Acclimatization temperature and temperature-rise rate are important factors which affect the thermal tolerance of nektons. The thermal tolerance significantly varies among species. The thermal tolerance of crustacean such as crab is generally higher than other experimental species.
学科领域地球科学 ; 海洋科学
语种中文
文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/136562
专题海洋生态与环境科学重点实验室
作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
南鸥. 石岛湾常见游泳动物的热耐受性研究[D]. 北京. 中国科学院大学,2017.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
硕士毕业论文-南鸥-最终版.pdf(2671KB)学位论文 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[南鸥]的文章
百度学术
百度学术中相似的文章
[南鸥]的文章
必应学术
必应学术中相似的文章
[南鸥]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 硕士毕业论文-南鸥-最终版.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。