IOCAS-IR  > 海洋环流与波动重点实验室
Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander
Wang Qiang1,2,3; Mu Mu1,2; Dijkstra, Henk A.4; Mu, M (reprint author), Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Wave, Qingdao 266071, Peoples R China.
2012
发表期刊ADVANCES IN ATMOSPHERIC SCIENCES
ISSN0256-1530
卷号29期号:1页码:118-134
文章类型Article
摘要A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three model parameters were considered: the interfacial friction coefficient, the wind-stress amplitude, and the lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model, the initial conditions should first be improved, the model parameters should use the best possible estimates.
关键词Conditional Nonlinear Optimal Perturbation Kuroshio Large Meander Predictability Model Parameters
学科领域Meteorology & Atmospheric Sciences
DOI10.1007/s00376-011-0199-0
URL查看原文
收录类别SCI
语种英语
WOS记录号WOS:000298387000011
引用统计
被引频次:43[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/12132
专题海洋环流与波动重点实验室
通讯作者Mu, M (reprint author), Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Wave, Qingdao 266071, Peoples R China.
作者单位1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Wave, Qingdao 266071, Peoples R China
2.Chinese Acad Sci, Inst Atomspher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
3.Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
4.Univ Utrecht, Dept Phys & Astron, Inst Marine & Atmospher Res Utrecht, NL-3584 CC Utrecht, Netherlands
第一作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Wang Qiang,Mu Mu,Dijkstra, Henk A.,et al. Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander[J]. ADVANCES IN ATMOSPHERIC SCIENCES,2012,29(1):118-134.
APA Wang Qiang,Mu Mu,Dijkstra, Henk A.,&Mu, M .(2012).Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander.ADVANCES IN ATMOSPHERIC SCIENCES,29(1),118-134.
MLA Wang Qiang,et al."Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander".ADVANCES IN ATMOSPHERIC SCIENCES 29.1(2012):118-134.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Application of the c(1434KB) 限制开放使用许可浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang Qiang]的文章
[Mu Mu]的文章
[Dijkstra, Henk A.]的文章
百度学术
百度学术中相似的文章
[Wang Qiang]的文章
[Mu Mu]的文章
[Dijkstra, Henk A.]的文章
必应学术
必应学术中相似的文章
[Wang Qiang]的文章
[Mu Mu]的文章
[Dijkstra, Henk A.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。